3,764 research outputs found

    Virtual reality for the built environment: A critical review of recent advances

    Get PDF
    This paper reviews the current state of the art for Virtual Reality (VR) and Virtual Environment (VE) applications in the field of the built environment. The review begins with a brief overview of technological components involved in enabling VR technology. A classification framework is developed to classify 150 journal papers in order to reveal the scholarly coverage of VR and VE from 2005 to 2011, inclusive. The classification framework summarizes achievements, established knowledge, research issues and challenges in the area. The framework is based on four layers of VR: concept and theory, implementation, evaluation and industrial adoption. These layers encompass architecture and design, urban planning and landscape, engineering, construction, facility management, lifecycle integration, training and education. This paper also discusses various representative VR research work in line with the classification framework. Finally the paper predicts future research trends in this area

    Unsupervised Multi-Omic Data Fusion: the Neural Graph Learning Network

    Get PDF
    In recent years, due to the high availability of omic data, data-driven biology has greatly expanded. However, the analysis of different data sources is still an open challenge. A few multi-omics approaches have been proposed in the literature, none of which takes into consideration the intrinsic topology of each omic, though. In this work, an unsupervised learning method based on a deep neural network is proposed. Foreach omic, a separate network is trained, whose outputs are fused into a single graph; at this purpose, an innovative loss function has been designed to better represent the data cluster manifolds. The graph adjacency matrix is exploited to determine similarities among samples. With this approach, omics having a different number of features are merged into a unique representation. Quantitative and qualitative analyses show that the proposed method has comparable results to the state of the art. The method has great intrinsic flexibility as it can be customized according to the complexity of the tasks and it has a lot of room for future improvements compared to more fine-tuned methods, opening the way for future research

    Deep generative modeling for single-cell transcriptomics.

    Get PDF
    Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task

    Cancer cells exploit an orphan RNA to drive metastatic progression.

    Get PDF
    Here we performed a systematic search to identify breast-cancer-specific small noncoding RNAs, which we have collectively termed orphan noncoding RNAs (oncRNAs). We subsequently discovered that one of these oncRNAs, which originates from the 3' end of TERC, acts as a regulator of gene expression and is a robust promoter of breast cancer metastasis. This oncRNA, which we have named T3p, exerts its prometastatic effects by acting as an inhibitor of RISC complex activity and increasing the expression of the prometastatic genes NUPR1 and PANX2. Furthermore, we have shown that oncRNAs are present in cancer-cell-derived extracellular vesicles, raising the possibility that these circulating oncRNAs may also have a role in non-cell autonomous disease pathogenesis. Additionally, these circulating oncRNAs present a novel avenue for cancer fingerprinting using liquid biopsies

    Genetic determinants of co-accessible chromatin regions in activated T cells across humans.

    Get PDF
    Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression

    The Escherichia coli transcriptome mostly consists of independently regulated modules

    Get PDF
    Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome

    Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin

    Get PDF
    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters

    Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-seq data

    Get PDF
    Background: In differential expression analysis of RNA-sequencing (RNA-seq) read count data for two sample groups, it is known that highly expressed genes (or longer genes) are more likely to be differentially expressed which is called read count bias (or gene length bias). This bias had great effect on the downstream Gene Ontology over-representation analysis. However, such a bias has not been systematically analyzed for different replicate types of RNA-seq data. Results: We show that the dispersion coefficient of a gene in the negative binomial modeling of read counts is the critical determinant of the read count bias (and gene length bias) by mathematical inference and tests for a number of simulated and real RNA-seq datasets. We demonstrate that the read count bias is mostly confined to data with small gene dispersions (e.g., technical replicates and some of genetically identical replicates such as cell lines or inbred animals), and many biological replicate data from unrelated samples do not suffer from such a bias except for genes with some small counts. It is also shown that the sample-permuting GSEA method yields a considerable number of false positives caused by the read count bias, while the preranked method does not. Conclusion: We showed the small gene variance (similarly, dispersion) is the main cause of read count bias (and gene length bias) for the first time and analyzed the read count bias for different replicate types of RNA-seq data and its effect on gene-set enrichment analysis
    corecore